
!o If it is assumed [7] that A ~ 10rd, then the inequality r o ~ A issatisfied for r o 
I0 =, so that ro/A ~I0. The exception is the case of a cylindrical probe, when ~ = !~ 
Here~ inequality (2) should be reinforced: r o ~I03, 

2~ It is not necessary to satisfy condition (3). Equation (i) is valid for both T e 
~i and T e = Ti~ It is valid beginning with r o > 50 in the case ~ = 0 and beginning with 
r o > I0 = (sphere) or ro > 103 (cylinder) in the case c = i. 

3. Condition (4) turns out to be satisfied if le~0/kTiI>2S. Somewhat less negative 
potentials can be used compared to the case E = I (Fig. 2) when s = O. 

The curves in Figs. I and 2 make it possible to select a characteristic probe dimension 
and potential if the required accuracy of the determination of the concentrations is pre- 
scribed in a probe experiment using Eq. (i). 

NOTATION 

ni, concentration of ions; Ii, ion current; mi, mass of ion; Ti, ion temperature; Te, 
electron temperature; k, Boltzmann constant; e, electrode charge; S, surface of probe; to, 
radius; ~o, potential of probe; %, mean free path; A, thickness of space-charge layer; rd, 
Debye radius; j, current density; JB, current density calculated by the Bohm formula. 
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HEATING OF THIN FILMS BY LASER RADIATION WITH ALLOWANCE 

FOR THE TEMPERATURE DEPENDENCE OF THE REFLECTION 

COEFFICIENT 

S. N. Kapel'yan and Yu. F. Morgun UDC 536~ 241:535. 211 

We solve the thermophysical problem of the heating of thin metal films on semicon- 
ductor substrates by laser radiation for linear and stepwise changes of the absorp- 
tivity as a function of the surface temperature. 

The laser alloying of semiconductors is a promising method of obtaining p--n junctions~ 
Laser radiation is focused on a semiconductor substrate of gallium arsenide [I] or silicon 
[2~ 3] covered with a film of thickness h ~ 300-3000 ~ of the alloying metal. The calcula- 
tion of the diffusion of the metal into the semiconductor requires first solving the thermal 
problem of the heating of a two-layer system by a laser pulse. 

The reflectivity of metals depends strongly on the condition of the surface (oxide film, 
quality of preparation~ etc~)o An analysis of the experimental data for a clean polished 
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metal surface [4-6] shows that the reflectivity depends almost linearly on the temperature 
over a wide temperature range. This leads to a change of the absorbable energy flux. In 
[7, 8] the variation of the surface reflectivity was taken into account by a linear function 
of the time. 

We consider the thermophysical problem of the heating of thin metal films on substrates 
by a square laser pulse of densityqo, W/m 2. We distinguish the thermophysical properties of 
the metal and substrate by subscripts i and 2, respectively. The thermal diffusivities are 
ax and a=, and the thermal conductivities Xx, 12, We assume that the specific heats c~, c2 
and the densities 0,, 02 are temperature independent. We assume ideal thermal contact be- 
tween the metal film and the substrate. 

The absorption coefficient of metals • % 107 - l0 B m -: and the strong absorption of 
light as given by Bouguer's law [9] show that for films of thickness h ~ 500 ~ no more than 
5% of the energy is directly absorbed in the substrate. For films of thickness 500 A~ h 
]/a-~p, whereTp is thepulseduration, we can neglect absorption in the substrate and assume, 
as shown:in []'0], that the heat source is uniformly distributed over the thickness of the 
film. In the one-dimensional approximation the equations for the temperature T, (x, t) of 
the metal film and T2 (x, t) of the substrate have the form 

- - = G  1 - - - { -  
at OxZ [ 0; t>Tp~ 0 ~ x < h ; .  (2) 

0 T~ 0~ T2 ( 3 ) 
0--7- = a~ - - '  h ~ x; ax ~ , 

T~ (x, 0) = T2 (x, 0) = 0; 

OTx(O, t) = 0; (4) 

Ox 

~,~ OT~(h, t) =~,2 0T~(h, l) . (5) 

Ox Ox ' 

T~(h, t )= r2(h, t); (6) 

T2~-~.. = O, (7) 

where Ax is the monochromatic absorptivity of the film at time t = 0, and B~ is the change 
in the absorptivity of the film material when heated I~ 

Using the fact that the metal film is thin, and taking the Laplace transforms of the 
temperatures of the film and substrate, we obtain 

T 1 (0, s) ~ qoA ~ V ' ~  ; t• Tp; (8) 

Ta(0 , s) N A~ e x p ( _ s T )  Jexp(d~Tp)(l@erfda ]/~pp) 1 @ daexp(srp) erIc|/sTp 1 
~ [ ] f s ( V s + d , )  - - - -~-  s ( V s + d O  - , ;  / > r p ;  (9) 

, ( l O )  

T 1 (x, s) = i T (x, t) exp (-- st) dt. (Ii) 
o 

Taking the inverse transforms, we obtain for t ~ Tp the dimensionless forms 

01(~)= ~i T1(t)=exp(~2)(l+erf~)_ I; (12) 
AI 

02 (~, T) = [31 T~ (x, t) = erfc (~--  ]f~') exp ( 'r 2~1/~-)-- erred, (13) 
A1 

where 

x--h 
= ]/~2 ; (14) 

m m  

= d y - F .  (15) 
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Calculations for t ~Tp give 

0~ ('0 - exp (~z) (1 -;- err %) (1 -- erf ~-- +~) -- 

--1 + exp(~) (err-c-- err%) + 2.~ [arctg ~ / "  .~2___j2~o 
~0 

exp (T2-- ~) f0 exp(--T~tg2U) dU ] , (16) 

arctg 

whe re 

% = dl V~P" (17) 

A program for evaluating such integrals by Simpson's rule is given in [ii]. 

Experimental data on the behavior of the absorptivity of metals after reaching the 
melting point are reported only in [7]. Judging from the data in [7], the absorptivity of 
Ag jumps from 0.244 to 0.531 at T = T~mp, and varies slowly and linearly with the tempera- 
ture for T~ > T~mp: 

A (T 0 = 0,53 q- 0,000041 (T, - -  Tmap). (18) 

The temperature distribution for t = t~ up to the time when T,mpis reachedhas theform 

TI (tl) = T,mp (19) 

and T2(x, t~) = f(x) is given by (13). Since the film is thin, the thermophysical charac- 
teristics of the metal do not enter Eqs. (12) and (13). This permits the following approxi- 
mate formulation of the problem for t > t~: 

OT~ 02T~. 
- -  = as  ~ ; x ~ h ;  t > t ~ ;  

Ot Ox ~ 

__~ ( OT20x /x=~l ={qo{A2+~[T~(h,o, t>Tp;t)--Tmp]}; r  

Employing Green's function for the 
of the second kind, and then taking the 

where 

(20) 

(21) 

(22) 

(23) 
T~ (X, tl) = [ (x); 
T (x-+ oo, t) = O. 
problem on the h a l f - l i n e  with a boundary cond i t i on  
Laplace t ransform of Ta(x, t)  for  t < Tp, we ob ta in  

T~ (h, s) = q~ (A~ -- [~Trnp) exp (-- st 0 q-  

~s (V-f - 4) 
At { exp(--stl) dlerfc ]/s~l exp(d;tl--stl)(l+erfdl~#~) } (24) 

+ --~1 ' V~(d2 --  Vs)  -~ V s  (Vs  -~ dl) (Vs - -  d~) -~ (Vs ~- dl) (V S -  d~) ' 

d~ = qoP2 V ~  (25) 
~2 

The inverse transform is obtained as for (8). However, for laser alloying of semicon- 
ductors the surface temperature of the film should not be much higher than the boiling point 
of the metal. For such temperature gradients B2(T=b p --T2mp)~ A= for Ag. This is probably 
realized in practice for other metals also. Then, setting d2 = 0 in (24), we obtain 

T~ (h, t) = 
~ VY 

2q0 V~A~ 
z~ V E  (V t -  q - Vr--Tp) + ~ (t). 

where ~ (t) is determined from (!6). 

Let us consider the heating of a silver film on a silicon substrate. Values of the 

(26) 

absorptivity of silver at various temperatures are listed in [7]. For temperatures T~ < T~m p 
the processing of these data gives 

A t / -  ~ITx (0, t) = 0.037 + 0.000215T 1 (0, 0; Tx < ~mp o (27) 
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Fig. i. Dependence of dimensionless temperature 
of a silver film on a silicon s~strate on the 
dimensionless time t/Tp for a linear dependence 
of the absorpt~ity on temperature: i) qo = 
10 I~ W/m2; 3) 1011; 5) 3 • 1011 , and for a con- 

stant value of the ~sorptivity: 2) qo = i0 I~ 
W/m2; 4) 1011; 6) 3 • 1011 . 

80o / 

200 I 

i [ I I 

0 z/ 8 12 t.fO a 

rig. 2. Time dependence of temperature of a zinc 
film on gallium arsenide when irradiated with % = 
0.69-~m ruby laser radiation with Tp = 9 • i0 -a 
sec for a linear variation of the absorptivity 
from 0.2 to 0.i at the melting point: i) qo = 
4 • 1011 W/m2; 3) 8 • 1011 , and for a stepwise 

change of the absorptivity from 0.2 to 0.i at the 
melting point: 2) qo = 4 • 1011W/m~; 4) 8 x 1011 . 
t is in see. 
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Figure ! shows the dimensionless temperature TI/A~ as a function of the time t/Tp for 
a pulse duration Tp = 5 • i0 -~ sec and qo = 10 I~ (curve i), 1011 (curve 3), and 3 • 1011 

(curve 5)~ For comparison the figure also shows the time dependence of T:/AI for ~i = 0 and 
the same values of qo (curves 2, 4, and 6, respectively). The figure shows that an increase 
in the flux leads to a sharp temperature increase as a result of the increase of absorptivity. 
Finally, for certain metals the absorptivity decreases as the temperature is increased to 
T~mp. Thus, under the action of I = 1.06-~m radiation the absorptivity of zinc decreases 
from 0.35 to 0.05. When zinc is irradiated with ~ = 0.69-~m ruby laser radiation, the ab- 
sorptivity decreases from 0.2 to 0.i [12]. In this case Eqs. (12), (13), (16), and (26) 
with ~I = 0 are applicable. The graphs in Fig. 2 show the time variation of the temperature 
of a thin Zn film on gallium arsenide when irradiated with a long pulse (Tp = 90 nsec) of 

= 0.69-um ruby laser radiation. Curves 1 and 3 correspond to heat flux densities qo = 
4 • i0 I~ and 8 • i0 ~ W/m 2, and were calculated for a linear variation of the reflectivity 
up to the melting point for T: < T1mp; A2 = const = 0.i. 

Curves 2 and 4 correspond to a stepwise change of reflectivity from 0.8 to 0.9 for TI > 
T1mp and heat flux densities 4 • 1011 and 8 • 1011W/m =. For a stepwise change of reflec- 

tivity (curves 2, 4) at TI = T1mp there is a minimum of the temperature as a result of the 
sharp decrease of the heat flux. Unfortunately, problem (1)-(7) does not take accountof d~e 
latent heat. The corresponding Stefan problem should emphasize still more clearly the pres- 
ence of a minimum at t = tmp. The relations derived permit the calculation of the film and 
substrate temperatures for a linear dependence of the reflectivity of the film on the tem- 
perature. 
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